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o Black hole information paradox
 Hawking’s paradox for evaporating black holes
* Maldacena’s paradox for eternal black holes

o Matrix models for black holes
 Exponential decay of a two-point function (review)
* Perturbative 1/N corrections do not restore information



Information paradox for evaporating black holes
(Hawking)

1. Collapsing matter produces a
black hole.

2. A black hole in Minkowski
space evaporates by emitting
radiation.
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3. Semiclassically, radiation is
thermal, and no information is
stored there.



Possible outcomes of the paradox

 Radiation is in a pure state and there are phase
correlations.

* Information is lost.

* A remnant with a huge number of states.
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infinite pair-creation of black holes



AdS/CFT

* For most of us, especially string theorists, AdS/CFT
resolved the paradox: time evolution is unitary, and
there have to be phase correlations.

A small black hole in AdS evaporates, and the process
is described, in principle, by a unitary evolution in
gauge theory.



Information paradox for eternal black holes

(Maldacena)

A large black hole in AdS does not evaporate, so
there is no information paradox of Hawking.

A related paradox: a two-point correlation function

shows an exponential fall-off in AdS. Valid for large N
and g°N.

In gauge theory at finite NV, there must be
recurrences.

Questions: Which corrections in AdS restore
recurrences?



e Festuccia and Liu argued that the exponential decay
in the planar limit and recurrences at finite NV persist
to weak coupling g°N.

* Though individual Feynman graphs do not have
exponential decay, the radius of convergence in g°’N
seems to go to zero at late times.

e Can we do better? N =4 SYM is difficult.
Toy models

Goals:

1. Exponential decay (lizuka and Polchinski)
2. 1/N corrections (lizuka, TO and Polchinski)



Cubic model: exponential decay

(lizuka and Polchinski)

 The simplest possible model:

— One adjointfield X x A4 — A

— One fundamental field ¢ x a — a'
* The Hamiltonian is

mAIJA]Z + ]\/fa:faq; + gaI(A + AT)ijaj
* Consider the two-point function at finite T

J

giM(t=t) <T ai(t)aT(t’)>T = 5, G(T,t —t')



* The Schwinger-Dyson equation is given graphically as
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* At zero temperature, the recursion relation
simplifies, and the exact solution can be found:

20 Joym(v/m)
Glw) = v J_1_wm(v/m)

P =2¢°N/m

* At finite temperature, an analytic solution seems
difficult to get. However, the recursion relation can
be used to numerically obtain the solution.



Zero temperature

Poles widen into cuts.
Cuts then merge.

Re G(T,w) is shown.

y = e—m/T

Infinite temperature




G(t) = / dwe ' G(w)
* Branch cuts at low temperature:
G(t) N/dwe“”fwa ~ T ag t — oo

Power-law decay

* Asingle-cut along the real axis at high temperature
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Exponential decay



Charge-charge model:

perturbative 1/N corrections
(lizuka, TO, and Polchinski)
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Three different methods to analyze the model:

* Feynman diagrams and Schwinger-Dyson equations
* Loop equations
 Sum over Young tableaux



Feynman diagrams and the SD equations

Genus zero
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Feynman diagrams and the SD equations
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Feynman diagrams and the SD equations

Genus zero
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Genus one
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Loop equations

* For any operator sz‘ , the following equation holds.

Y
(OjiAij) = . ([Aij, Ojil)

* This relation can be used to compute

NG(t) = 6(t) (Tre 1)

* Genus zero and one contributions can be computed.




Sum over Young tableaux

* The charge-charge interaction can be written as a
sum of quadratic Casimirs:

2¢-Q=(q+Q)° — ¢ —Q°

* The spectrum can be found by decomposing the
Hilbert space into irreps of U(N).

~

—iG(w) = (1—y)" ) y™(dimR)* Q(w)



Sum over Young tableaux

\
In the large N limit, the

sum becomes a

functional integral over

the shapes, and the =5
genus zero amplitude is
given by the typical

tableau.




What restores information?

Maldacena and Hawking conjectured that the sum over

geometries (saddle E)omts) restores information. This effect
has size ~ €

A known saddle point is the thermal AdS, which has the same
boundary as the AdS black hole (Hawking & Page). The
thermal AdS is expected to be realized as a saddle in the
Polyakov loop integral (Aharony et al.).

But in our models, we haven’t included the Polyakov loop

integral (= singlet constraint), so the second saddle is not the
reason for information restoration.



Summary and conclusions

Eternal black holes also exhibit an information
paradox.

lizuka and Polchinski demonstrated exponential
decay in a large N matrix model.

Perturbative 1/N corrections do not resolve
information loss, which requires non-perturbative
effects.

A second saddle does not restore information either.
(Beware of the artifacts of toy models)



Open problems and future directions

* Analytic understanding of the exponential decay.

* Matrix models for other problems. For example, look
for a model with the largest /' (fast scrambler).

* Exponential decay for open strings in the AdS black
hole background.



