Matrix models for the black hole information paradox

Takuya Okuda, Perimeter Institute
Joint work with N. Jizuka and J. Polchinski

- Black hole information paradox
 - Hawking's paradox for evaporating black holes
 - Maldacena's paradox for eternal black holes
- Matrix models for black holes
 - Exponential decay of a two-point function (review)
 - Perturbative 1/N corrections do not restore information

Information paradox for evaporating black holes (Hawking)

- 1. Collapsing matter produces a black hole.
- 2. A black hole in Minkowski space evaporates by emitting radiation.
- 3. Semiclassically, radiation is thermal, and no information is stored there.

Possible outcomes of the paradox

 Radiation is in a pure state and there are phase correlations.

Information is lost.

A remnant with a huge number of states.

Possible outcomes of the paradox

 Radiation is in a pure state and there are phase correlations.

locality

• Information is lost.

principles of quantum mechanics

A remnant with a huge number of states.

infinite pair-creation of black holes

AdS/CFT

 For most of us, especially string theorists, AdS/CFT resolved the paradox: time evolution is unitary, and there have to be phase correlations.

 A small black hole in AdS evaporates, and the process is described, in principle, by a unitary evolution in gauge theory.

Information paradox for eternal black holes (Maldacena)

- A large black hole in AdS does not evaporate, so there is no information paradox of Hawking.
- A related paradox: a two-point correlation function shows an exponential fall-off in AdS. Valid for large N and g^2N .
- In gauge theory at finite N, there must be recurrences.
- Questions: Which corrections in AdS restore recurrences?

- Festuccia and Liu argued that the exponential decay in the planar limit and recurrences at finite N persist to weak coupling g^2N .
- Though individual Feynman graphs do not have exponential decay, the radius of convergence in g^2N seems to go to zero at late times.
- Can we do better? N = 4 SYM is difficult.

Toy models

Goals:

- 1. Exponential decay (lizuka and Polchinski)
- 2. 1/N corrections (lizuka, TO and Polchinski)

Cubic model: exponential decay

(lizuka and Polchinski)

- The simplest possible model:
 - One adjoint field $X \propto A A^{\dagger}$
 - One fundamental field $\,\phi \propto a a^{\dagger}$
- The Hamiltonian is

$$mA_{ij}^{\dagger}A_{ji} + Ma_i^{\dagger}a_i + ga_i^{\dagger}(A + A^{\dagger})_{ij}a_j$$

• Consider the two-point function at finite T

$$e^{iM(t-t')} \left\langle \operatorname{T} a_i(t) a_j^{\dagger}(t') \right\rangle_T \equiv \delta_{ij} G(T, t-t')$$

The Schwinger-Dyson equation is given graphically as

• This leads to the recursion relation for $\tilde{G}(\omega)$:

$$\tilde{G}(T,\omega-m) - \frac{4}{\nu_T^2} \frac{1}{\tilde{G}(T,\omega)} + e^{-m/T} \tilde{G}(T,\omega+m) = \frac{4i\omega}{\nu_T^2}$$

with
$$u_T^2 = \frac{2g^2N}{m(1 - e^{-m/T})}$$
 .

 At zero temperature, the recursion relation simplifies, and the exact solution can be found:

$$\tilde{G}(\omega) = \frac{2i}{\nu} \frac{J_{-\omega/m}(\nu/m)}{J_{-1-\omega/m}(\nu/m)} \ , \quad \nu^2 = 2g^2 N/m \ .$$

 At finite temperature, an analytic solution seems difficult to get. However, the recursion relation can be used to numerically obtain the solution.

Zero temperature

Poles widen into cuts. Cuts then merge.

 $\operatorname{Re} \widetilde{G}(T,\omega)$ is shown. $y = e^{-m/T}$

$$y = e^{-m/T}$$

Infinite temperature

$$G(t) = \int d\omega e^{-i\omega t} \widetilde{G}(\omega)$$

Branch cuts at low temperature:

$$G(t) \sim \int d\omega e^{-\omega t} \omega^{\alpha} \sim t^{-(\alpha+1)} \text{ as } t \to \infty$$

Power-law decay

A single-cut along the real axis at high temperature

Exponential decay

Charge-charge model: perturbative 1/N corrections

(lizuka, TO, and Polchinski)

$$H_{\text{int}} = -hq_{li}Q_{il} , \quad Q_{il} = A_{ij}^{\dagger}A_{jl}$$
$$q_{li} = -a_i^{\dagger}a_l$$

Three different methods to analyze the model:

- Feynman diagrams and Schwinger-Dyson equations
- Loop equations
- Sum over Young tableaux

Feynman diagrams and the SD equations

Genus zero

Feynman diagrams and the SD equations

Feynman diagrams and the SD equations

Genus zero

$$\tilde{G}^{(0)}(T,\omega) = \frac{i(1-y)}{2\omega\lambda} \left(\lambda + \omega - \sqrt{(\omega - \omega_{+})(\omega - \omega_{-})}\right)$$

$$\omega_{\pm} = \lambda \frac{1+y\pm2\sqrt{y}}{1-y}$$

Genus one

$$\tilde{G}^{(1)}(T,\omega) = \frac{iy^2 x_0^3 (1 - x_0)^4 (1 - x_0 [1 - y])}{(1 - 2x_0 + x_0^2 [1 - y])^4 (\omega [1 - x_0]^2 - \lambda_y y)}$$
$$x_0 = -i\lambda_y \tilde{G}^{(0)}(\omega) \qquad \lambda_y = \frac{\lambda}{1 - y} = \frac{hN}{1 - y}$$

Loop equations

• For any operator \mathcal{O}_{ii} , the following equation holds.

$$\langle \mathcal{O}_{ji} A_{ij} \rangle = \frac{y}{1-y} \langle [A_{ij}, \mathcal{O}_{ji}] \rangle$$

This relation can be used to compute

$$NG(t) = \theta(t) \left\langle \operatorname{Tr} e^{-ihQt} \right\rangle ,$$

 $N\tilde{G}(\omega) = \left\langle \operatorname{Tr} \frac{i}{\omega - hQ} \right\rangle .$

Genus zero and one contributions can be computed.

Sum over Young tableaux

 The charge-charge interaction can be written as a sum of quadratic Casimirs:

$$2q \cdot Q = (q+Q)^2 - q^2 - Q^2$$

• The spectrum can be found by decomposing the Hilbert space into irreps of U(N).

$$-i\tilde{G}(\omega) = (1-y)^{N^2} \sum_{R} y^{|R|} (\dim R)^2 \Omega(\omega)$$

Sum over Young tableaux

In the large N limit, the sum becomes a functional integral over the shapes, and the genus zero amplitude is given by the typical tableau.

What restores information?

- Maldacena and Hawking conjectured that the sum over geometries (saddle points) restores information. This effect has size $\sim e^{-\mathcal{O}(N^2)}$.
- A known saddle point is the thermal AdS, which has the same boundary as the AdS black hole (Hawking & Page). The thermal AdS is expected to be realized as a saddle in the Polyakov loop integral (Aharony et al.).
- But in our models, we haven't included the Polyakov loop integral (= singlet constraint), so the second saddle is not the reason for information restoration.

Summary and conclusions

- Eternal black holes also exhibit an information paradox.
- Iizuka and Polchinski demonstrated exponential decay in a large N matrix model.
- Perturbative 1/N corrections do not resolve information loss, which requires non-perturbative effects.
- A second saddle does not restore information either.
 (Beware of the artifacts of toy models)

Open problems and future directions

Analytic understanding of the exponential decay.

• Matrix models for other problems. For example, look for a model with the largest Γ (fast scrambler).

 Exponential decay for open strings in the AdS black hole background.